
Paradyn Parallel Performance Tools

SymtabAPI
Programmer’s Guide

13.0 Release
February 2024

Computer Sciences Department

University of Wisconsin–Madison

Madison, WI 53706

Computer Science Department

University of Maryland

College Park, MD 20742

Email dyninst-api@cs.wisc.edu

Web https://github.com/dyninst/dyninst

Contents

1 Introduction 4

2 Abstractions 4

2.1 Symbol Table Interface . 6

2.2 Type Interface . 6

2.3 Line Number Interface . 7

2.4 Local Variable Interface . 7

2.5 Dynamic Address Translation . 8

3 Simple Examples 9

4 De�nitions and Basic Types 12

4.1 De�nitions . 12

4.2 Basic Types . 13

5 Namespace SymtabAPI 14

6 API Reference - Symbol Table Interface 14

6.1 Class Symtab . 14

6.1.1 File opening/parsing . 17

6.1.2 Module lookup . 17

6.1.3 Function, Variable, and Symbol lookup . 18

6.1.4 Region lookup . 20

6.1.5 Insertion and modi�cation . 21

6.1.6 Catch and Exception block lookup . 23

6.1.7 Symtab information . 24

6.1.8 Line number information . 25

6.1.9 Type information . 25

6.2 Class Module . 27

6.2.1 Function, Variable, Symbol lookup . 27

1

6.2.2 Line number information . 29

6.2.3 Type information . 29

6.3 Class FunctionBase . 30

6.4 Class Function . 32

6.5 Class InlinedFunction . 33

6.6 Class Variable . 34

6.7 Class Symbol . 35

6.7.1 Symbol modi�cation . 38

6.8 Class Archive . 38

6.9 Class Region . 40

6.9.1 REMOVED . 43

6.10 Relocation Information . 43

6.11 Class ExceptionBlock . 44

6.12 Class localVar . 44

6.13 Class VariableLocation . 44

7 API Reference - Line Number Interface 45

7.1 Class LineInformation . 46

7.2 Class Statement . 47

7.3 Iterating over Line Information . 47

8 API Reference - Type Interface 48

8.1 Class Type . 48

8.2 Class typeEnum . 51

8.3 Class typeFunction . 52

8.4 Class typeScalar . 53

8.5 Class Field . 54

8.6 Class �eldListType . 55

8.6.1 Class typeStruct : public �eldListType . 55

8.6.2 Class typeUnion . 56

2

8.6.3 Class typeCommon . 57

8.6.4 Class CBlock . 57

8.7 Class derivedType . 58

8.7.1 Class typePointer . 58

8.7.2 Class typeTypedef . 59

8.7.3 Class typeRef . 59

8.8 Class rangedType . 60

8.8.1 Class typeSubrange . 60

8.8.2 Class typeArray . 61

9 API Reference - Dynamic Components 61

9.1 Class AddressLookup . 61

9.2 Class ProcessReader . 64

3

1 Introduction

SymtabAPI is a multi-platform library for parsing symbol tables, object �le headers and debug
information. SymtabAPI currently supports the ELF (IA-32, AMD-64, ARMv8-64, and POWER)
and PE (Windows) object �le formats. In addition, it also supports the DWARF debugging format.

The main goal of this API is to provide an abstract view of binaries and libraries across multiple
platforms. An abstract interface provides two bene�ts: it simpli�es the development of a tool since
the complexity of a particular �le format is hidden, and it allows tools to be easily ported between
platforms. Each binary object �le is represented in a canonical platform independent manner by
the API. The canonical format consists of four components: a header block that contains general
information about the object (e.g., its name and location), a set of symbol lists that index symbols
within the object for fast lookup, debug information (type, line number and local variable informa-
tion) present in the object �le and a set of additional data that represents information that may be
present in the object (e.g., relocation or exception information). Adding a new format requires no
changes to the interface and hence will not a�ect any of the tools that use the SymtabAPI.

Our other design goal with SymtabAPI is to allow users and tool developers to easily extend or add
symbol or debug information to the library through a platform-independent interface. Often times
it is impossible to satify all the requirements of a tool that uses SymtabAPI, as those requirements
can vary from tool to tool. So by providing extensible structures, SymtabAPI allows tools to modify
any structure to �t their own requirements. Also, tools frequently use more sophisticated analyses
to augment the information available from the binary directly; it should be possible to make this
extra information available to the SymtabAPI library. An example of this is a tool operating on a
stripped binary. Although the symbols for the majority of functions in the binary may be missing,
many can be determined via more sophisticated analysis. In our model, the tool would then inform
the SymtabAPI library of the presence of these functions; this information would be incorporated
and available for subsequent analysis. Other examples of such extensions might involve creating
and adding new types or adding new local variables to certain functions.

2 Abstractions

SymtabAPI provides a simple set of abstractions over complicated data structures which makes
it straight-forward to use. The SymtabAPI consists of �ve classes of interfaces: the symbol table
interface, the type interface, the line map interface, the local variable interface, and the address
translation interface.

Figure 1 shows the ownership hierarchy for the SymtabAPI classes. Ownership here is a �contains�
relationship; if one class owns another, then instances of the owner class maintain an exclusive
instance of the other. For example, each Symtab class instance contains multiple instances of
class Symbol and each Symbol class instance belongs to one Symtab class instance. Each of four
interfaces and the classes belonging to these interfaces are described in the rest of this section. The
API functions in each of the classes are described in detail in Section 6.

4

Archive

Symtab

Module

ExceptionBlock Function

Symbol

localVar

Variable Type LineInformation

Statement

A Class A belongs to the

symbol table interface

A Class A belongs to the

Type interface

A Class A belongs to the

Local Variable interface

A Class A belongs to the

Line Number interface

L
E
G
E
N
D

Figure 1: SymtabAPI Object Ownership Diagram

5

2.1 Symbol Table Interface

The symbol table interface is responsible for parsing the object �le and handling the look-up and
addition of new symbols. It is also responsible for the emit functionality that SymtabAPI supports.
The Symtab and the Module classes inherit from the LookupInterface class, an abstract class,
ensuring the same lookup function signatures for both Module and Symtab classes.

Symtab A Symtab class object represents either an object �le on-disk or in-memory that the
SymtabAPI library operates on.

Symbol A Symbol class object represents an entry in the symbol table.

Module A Module class object represents a particular source �le in cases where multiple �les were
compiled into a single binary object; if this information is not present, we use a single default
module.

Archive An Archive class object represents a collection of binary objects stored in a single �le
(e.g., a static archive).

ExceptionBlock An ExceptionBlock class object represents an exception block which contains
the information necessary for run-time exception handling.

In addition, we de�ne two symbol aggregates, Function and Variable. These classes collect multiple
symbols with the same address and type but di�erent names; for example, weak and strong symbols
for a single function.

2.2 Type Interface

The Type interface is responsible for parsing type information from the object �le and handling the
look-up and addition of new type information. Figure 2 shows the class inheritance diagram for the
type interface. Class Type is the base class for all of the classes that are part of the interface. This
class provides the basic common functionality for all the types, such as querying the name and size
of a type. The rest of the classes represent speci�c types and provide more functionality based on
the type.

Some of the types inherit from a second level of type classes, each representing a separate category
of types.

�eldListType - This category of types represent the container types that contain a list of �elds.
Examples of this category include structure and the union types.

derivedType - This category of types represent types derived from a base type. Examples of this
category include typedef, pointer and reference types.

rangedType - This category represents range types. Examples of this category include the array
and the sub-range types.

6

Type

typeEnum

typeFunction

typeScalar

derivedType

typeRef

typePointer

typeTypedef

�eldListType

typeStruct

typeUnion

typeCommon

rangedType

typeArray

typeSubrange

CBlock

A Class A belongs to the

Type interface

A B A inherits from B

Represents an abstract class

L
E
G
E
N
D

Figure 2: SymtabAPI Type Interface - Class Inheritance Diagram

The enum, function, common block and scalar types do not fall under any of the above category of
types. Each of the speci�c types is derived from Type.

2.3 Line Number Interface

The Line Number interface is responsible for parsing line number information from the object �le
debug information and handling the look-up and addition of new line information. The main classes
for this interface are LineInformation and LineNoTuple.

LineInformation - A LineInformation class object represents a mapping of line numbers to ad-
dress range within a module (source �le).

Statement/LineNoTuple - A Statement class object represents a location in source code with
a source �le, line number in that source �le and start column in that line. For backwards
compatibility, Statements may also be referred to as LineNoTuples.

2.4 Local Variable Interface

The Local Variable Interface is responsible for parsing local variable and parameter information of
functions from the object �le debug information and handling the look-up and addition of new add
new local variables. All the local variables within a function are tied to the Symbol class object
representing that function.

7

localVar - A localVar class object represents a local variable or a parameter belonging to a function.

2.5 Dynamic Address Translation

The AddressLookup class is a component for mapping between absolute addresses found in a running
process and SymtabAPI objects. This is useful because libraries can load at di�erent addresses in
di�erent processes. Each AddressLookup instance is associated with, and provides mapping for,
one process.

8

3 Simple Examples

To illustrate the ideas in the API, this section presents several short examples that demonstrate how
the API can be used. SymtabAPI has the ability to parse �les that are on-disk or present in memory.
The user program starts by requesting SymtabAPI to parse an object �le. SymtabAPI returns a
handle if the parsing succeeds, whcih can be used for further interactions with the SymtabAPI
library. The following example shows how to parse a shared object �le on disk.

1 using namespace Dyninst;
using namespace SymtabAPI;

//Name the object file to be parsed:
std::string file = "libfoo.so";

6

//Declare a pointer to an object of type Symtab; this represents the file.
Symtab *obj = NULL;

// Parse the object file
11 bool err = Symtab::openFile(obj, file);

Once the object �le is parsed successfully and the handle is obtained, symbol look up and update
operations can be performed in the following way:

using namespace Dyninst;
using namespace SymtabAPI;
std::vector <Symbol *> syms;

4 std::vector <Function *> funcs;

// search for a function with demangled (pretty) name "bar".
if (obj=>findFunctionsByName(funcs, "bar")) {

// Add a new (mangled) primary name to the first function
9 funcs[0]=>addMangledName("newname", true);
}

// search for symbol of any type with demangled (pretty) name "bar".
if (obj=>findSymbol(syms, "bar", Symbol::ST_UNKNOWN)) {

14

// change the type of the found symbol to type variable(ST_OBJECT)
syms[0]=>setType(Symbol::ST_OBJECT);

// These changes are automatically added to symtabAPI; no further
19 // actions are required by the user.

}

9

New symbols, functions, and variables can be created and added to the library at any point using
the handle returned by successful parsing of the object �le. When possible, add a function or
variable rather than a symbol directly.

using namespace Dyninst;
using namespace SymtabAPI;

// obj represents a handle to a parsed object file.
5 for(auto *m : obj=>findModulesByName("/path/to/foo.c")) {

// Create a new function symbol
Variable *newVar = m=>createVariable("newIntVar", // Name of new variable

0x12345, // Offset from data section
10 sizeof(int)); // Size of symbol

}

SymtabAPI gives the ability to query type information present in the object �le. Also, new user
de�ned types can be added to SymtabAPI. The following example shows both how to query type
information after an object �le is successfully parsed and also add a new structure type.

// create a new struct Type
// typedef struct{
//int field1,

4 //int field2[10]
// } struct1;

using namespace Dyninst;
using namespace SymtabAPI;

9

// Find a handle to the integer type; obj represents a handle to a parsed object file
Type *lookupType;
obj=>findType(lookupType, "int");

14 // Convert the generic type object to the specific scalar type object
typeScalar *intType = lookupType=>getScalarType();

// container to hold names and types of the new structure type
vector<pair<string, Type *> >fields;

19

//create a new array type(int type2[10])
typeArray *intArray = typeArray::create("intArray",intType,0,9, obj);

//types of the structure fields
24 fields.push_back(pair<string, Type *>("field1", intType));

fields.push_back(pair<string, Type *>("field2", intArray));

//create the structure type
typeStruct *struct1 = typeStruct::create("struct1", fields, obj);

Users can also query line number information present in an object �le. The following example shows
how to use SymtabAPI to get the address range for a line number within a source �le.

10

using namespace Dyninst;
2 using namespace SymtabAPI;

// obj represents a handle to a parsed object file using symtabAPI
// Container to hold the address range
vector< pair< Offset, Offset > > ranges;

7

// Get the address range for the line 30 in source file foo.c
obj=>getAddressRanges(ranges, "foo.c", 30);

Local variable information can be obtained using symtabAPI. You can query for a local variable
within the entire object �le or just within a function. The following example shows how to �nd
local variable foo within function bar.

1 using namespace Dyninst;
using namespace SymtabAPI;

// Obj represents a handle to a parsed object file using symtabAPI
// Get the Symbol object representing function bar

6 vector<Symbol *> syms;
obj=>findSymbol(syms, "bar", Symbol::ST_FUNCTION);

// Find the local var foo within function bar
vector<localVar *> *vars = syms[0]=>findLocalVarible("foo");

The rest of this document describes the class hierarchy and the API in detail.

11

4 De�nitions and Basic Types

The following de�nitions and basic types are referenced throughout the rest of this document.

4.1 De�nitions

O�set O�sets represent an address relative to the start address(base) of the object �le. For
executables, the O�set represents an absolute address. The following de�nitions deal with
the symbol table interface.

Object File An object �le is the representation of code that a compiler or assembler generates by
processing a source code �le. It represents .o's, a.out's and shared libraries.

Region A region represents a contiguous area of the �le that contains executable code or readable
data; for example, an ELF section.

Symbol A symbol represents an entry in the symbol table, and may identify a function, variable
or other structure within the �le.

Function A function represents a code object within the �le represented by one or more symbols.

Variable A variable represents a data object within the �le represented by one or more symbols.

Module A module represents a particular source �le in cases where multiple �les were compiled
into a single binary object; if this information is not present, or if the binary object is a shared
library, we use a single default module.

Archive An archive represents a collection of binary objects stored in a single �le (e.g., a static
archive).

Relocations These provide the necessary information for inter-object references between two ob-
ject �les.

Exception Blocks These contain the information necessary for run-time exception handling The
following de�nitions deal with members of the Symbol class.

Mangled Name A mangled name for a symbol provides a way of encoding additional information
about a function, structure, class or another data type in a symbol name. It is a technique used
to produce unique names for programming entities in many modern programming languages.
For example, the method foo of class C with signature int C::foo(int, int) has a mangled
name _ZN1C3fooEii when compiled with gcc. Mangled names may include a sequence of
clone su�xes (begins with `.' that indicate a compiler synthesized function), and this may be
followed by a version su�x (begins with `@').

Pretty Name A pretty name for a symbol is the demangled user-level symbolic name without
type information for the function parameters and return types. For non-mangled names, the
pretty name is the symbol name. Any function clone su�xes of the symbol are appended to
the result of the demangler. For example, a symbol with a mangled name _ZN1C3fooEii for
the method int C::foo(int, int) has a pretty name C::foo. Version su�xes are removed from

12

the mangled name before conversion to the pretty name. The pretty name can be obtained
by running the command line tool c++filt as c++filt -i -p name , or using the libiberty library
function cplus_demangle with options of DMGL_AUTO | DMGL_ANSI.

Typed Name A typed name for a symbol is the demangled user-level symbolic name including type
information for the function parameters. Typically, but not always, function return type information
is not included. Any function clone information is also included. For non-mangled names, the typed
name is the symbol name. For example, a symbol with a mangled name _ZN1C3fooEii for the method
int C::foo(int, int) has a typed name C::foo(int, int). Version su�xes are removed from the mangled
name before conversion to the typed name. The typed name can be obtained by running the command
line tool c++filt as c++filt -i name , or using the libiberty library function cplus_demangle with
options of DMGL_AUTO | DMGL_ANSI | DMGL_PARAMS.

Symbol Linkage The symbol linkage for a symbol gives information on the visibility (binding) of this
symbol, whether it is visible only in the object �le where it is de�ned (local), if it is visible to all the
object �les that are being linked (global), or if its a weak alias to a global symbol.

Symbol Type Symbol type for a symbol represents the category of symbols to which it belongs. It can
be a function symbol or a variable symbol or a module symbol. The following de�nitions deal with
the type and the local variable interface.

Type A type represents the data type of a variable or a parameter. This can represent language pre-de�ned
types (e.g. int, �oat), pre-de�ned types in the object (e.g., structures or unions), or user-de�ned types.

Local Variable A local variable represents a variable that has been declared within the scope of a sub-
routine or a parameter to a sub-routine.

4.2 Basic Types

typedef unsigned long Offset

An integer value that contains an o�set from base address of the object �le.

typedef int typeId_t

A unique handle for identifying a type. Each of types is assigned a globally unique ID.
This way it is easier to identify any data type of a variable or a parameter.

typedef ... PID

A handle for identifying a process that is used by the dynamic components of SymtabAPI.
On UNIX platforms PID is a int, on Windows it is a HANDLE that refers to a process.

typedef unsigned long Address

An integer value that represents an address in a process. This is used by the dynamic
components of SymtabAPI.

13

5 Namespace SymtabAPI

The classes described in the following sections are under the C++ namespace Dyninst::SymtabAPI.
To access them a user should refer to them using the Dyninst:: and SymtabAPI:: pre�xes, e.g.
Dyninst::SymtabAPI::Type. Alternatively, a user can add the C++ using keyword above any
references to SymtabAPI objects, e.g, using namespace Dyninst and using namespace SymtabAPI.

6 API Reference - Symbol Table Interface

This section describes the symbol table interface for the SymtabAPI library. Currently this interface
has the following capabilities:

� Parsing the symbols in a binary, either on disk or in memory

� Querying for symbols

� Updating existing symbol information

� Adding new symbols

� Exporting symbols in standard formats

� Accessing relocation and exception information

� Accessing and modifying header information

The symbol table information is represented by the Symtab, Symbol, Archive, and Region classes.
Module, Function, and Variable provide abstractions that support common use patterns. Finally,
LocalVar represents function-local variables and parameters.

6.1 Class Symtab

De�ned in: Symtab.h

The Symtab class represents an object �le either on-disk or in-memory. This class is responsible for the
parsing of the Object �le information and holding the data that can be accessed through look up functions.

14

Method name Return type Method description

file std::string Full path to the opened �le or provided name for the mem-
ory image.

name std::string File name without path.
memberName std::string For archive (.a) �les, returns the object �le (.o) this Symtab

represents.
getNumberOfRegions unsigned Number of regions.
getNumberOfSymbols unsigned Total number of symbols in both the static and dynamic

tables.
mem_image char * Pointer to memory image for the Symtab; not valid for disk

�les.
imageOffset O�set O�set of the �rst code segment from the start of the binary.
dataOffset O�set O�set of the �rst data segment from the start of the binary.
imageLength O�set Size of the primary code-containing region, typically .text.
dataLength O�set Size of the primary data-containing region, typically .data.
isStaticBinary bool True if the binary was compiled statically.
isExecutable bool True if the �le is an executable.
isSharedLibrary bool True if the �le is a shared library.
isExec bool True if the �le is can only be an executable, false other-

wise including �les that are both exeutables and shared
libraries. Typically �les that are both executables and
shared libraries are primarily used as libraries, if you need
to determine speci�cs use the methods isExecutable and
isSharedLibrary.

isStripped bool True if the �le was stripped of symbol table information.
getAddressWidth unsigned Size (in bytes) of a pointer value in the Symtab; 4 for 32-bit

binaries and 8 for 64-bit binaries.
getArchitecture Architecture Representation of the system architecture for the binary.
getLoadOffset O�set The suggested load o�set of the �le; typically 0 for shared

libraries.
getEntryOffset O�set The entry point (where execution begins) of the binary.
getBaseOffset O�set (Windows only) the OS-speci�ed base o�set of the �le.

ObjectType getObjectType() const

This method queries information on the type of the object �le.

bool isExecutable()

bool isSharedLibrary()

bool isExec()

These methods respectively return true if the Symtab's object is an executable, a shared library,
and an executable is that is not a shared library. An object may be both an executable and a
shared library.

An Elf Object that can be loaded into memory to form an executable's image has one of two types:
ET_EXEC and ET_DYN. ET_EXEC type objects are executables that are loaded at a �xed
address determined at link time. ET_DYN type objects historically were shared libraries that are

15

loaded at an arbitrary location in memory and are position independent code (PIC). The ET_DYN
object type was reused for position independent executables (PIE) that allows the executable to
be loaded at an arbitrary location in memory. Although generally not the case an object can be
both a PIE executable and a shared library. Examples of these include libc.so and the dynamic
linker library (ld.so). These objects are generally used as a shared library so isExec() will classify
these based on their typical usage. The methods below use heuristics to classify ET_DYN object
types correctly based on the properties of the Elf Object, and will correctly classify most objects.
Due to the inherent ambiguity of ET_DYN object types, the heuristics may fail to classify some
libraries that are also executables as an executable. This can happen in object is a shared library
and an executable, and its entry point happens to be at the start of the .text section.

isExecutable() is equivalent to elfutils' elfclassify --program test with the re�nement of the
soname value and entry point tests. Pseudocode for the algorithm is shown below:

� if (not loadable()) return false

� if (object type is ET_EXEC) return true

� if (has an interpreter (PT_INTERP segment exists)) return true

� if (PIE �ag is set in FLAGS_1 of the PT_DYNAMIC segment) return true

� if (DT_DEBUG tag exists in PT_DYNAMIC segment) return true

� if (has a soname and its value is �linux-gate.so.1�) return false

� if (entry point is in range .text section o�set plus 1 to the end of the .text section) return
true

� if (has a soname and its value starts with �ld-linux�) return true

� otherwise return false

isSharedLibrary() is equivalent to elfutils' elfclassify --library. Pseudocode for the algo-
rithm is shown below:

� if (not loadable()) return false

� if (object type is ET_EXEC) return false

� if (there is no PT_DYNAMIC segment) return false

� if (PIE �ag is set in FLAGS_1 of the PT_DYNAMIC segment) return false

� if (DT_DEBUG tag exists in PT_DYNAMIC segment) return false

� otherwise return true

Elf �les can also store data that is neither an executable nor a shared library including object �les,
core �les and debug symbol �les. To distinguish these cases the loadable() function is de�ned
using the pseudocode shown below and returns true is the �le can loaded into a process's address
space:

� if (object type is neither ET_EXEC nor ET_DYN) return false

� if (there is are no program segments with the PT_LOAD �ag set) return false

� if (contains no sections) return true

� if (contains a section with the SHF_ALLOC �ag set and a section type of neither SHT_NOTE
nor SHT_NOBITS) return true

� otherwise return false

16

6.1.1 File opening/parsing

static bool openFile(Symtab *&obj,

string filename)

Creates a new Symtab object for an object �le on disk. This object serves as a handle to the
parsed object �le. filename represents the name of the Object �le to be parsed. The Symtab

object is returned in obj if the parsing succeeds. Returns true if the �le is parsed without an
error, else returns false. getLastSymtabError() and printError() should be called to get more
error details.

static bool openFile(Symtab *&obj,

char *mem_image,

size_t size,

std::string name)

This factory method creates a new Symtab object for an object �le in memory. This object serves
as a handle to the parsed object �le. mem_image represents the pointer to the Object �le in memory
to be parsed. size indicates the size of the image. name speci�es the name we will give to the
parsed object. The Symtab object is returned in obj if the parsing succeeds. Returns true if
the �le is parsed without an error, else returns false. getLastSymtabError() and printError()

should be called to get more error details.

static Symtab *findOpenSymtab(string name)

Find a previously opened Symtab that matches the provided name.

6.1.2 Module lookup

Module *getDefaultModule() const

Returns the default module, a collection of all functions, variables, and symbols that do not have
an explicit module speci�ed.

std::vector<Module*> findModulesByName(std::string const& name) const

Retrieve all modules with name name.

Module* findModuleByOffset(Offset offset) const

Returns the module starting at offset; nullptr, if not found.

17

Module* getContainingModule(Offset offset) const

Returns the module with PC ranges that contain offset; nullptr, if not found. The default mod-
ule will be returned if and only if it is the only module present. By contrast, findModuleByOffset,
�nds a module starting at offset.

bool getAllModules(vector<module *> &ret)

This method returns all modules in the object �le. Returns true on success and false if there
are no modules. The error value is set to No_Such_Module.

6.1.3 Function, Variable, and Symbol lookup

bool findFuncByEntryOffset(Function *&ret,

const Offset offset)

This method returns the Function object that begins at offset. Returns true on success and
false if there is no matching function. The error value is set to No_Such_Function.

bool findFunctionsByName(std::vector<Function *> &ret,

const std::string name,

NameType nameType = anyName,

bool isRegex = false,

bool checkCase = true)

This method �nds and returns a vector of Functions whose names match the given pattern. The
nameType parameter determines which names are searched: mangled, pretty, typed, or any. If the
isRegex �ag is set a regular expression match is performed with the symbol names. checkCase is
applicable only if isRegex has been set. This indicates if the case be considered while performing
regular expression matching. ret contains the list of matching Functions, if any. Returns true if
it �nds functions that match the given name, otherwise returns false. The error value is set to
No_Such_Function.

bool getContainingFunction(Offset offset,

Function *&ret)

This method returns the function, if any, that contains the provided offset. Returns true on
success and false on failure. The error value is set to No_Such_Function. Note that this method
does not parse, and therefore relies on the symbol table for information. As a result it may return
incorrect information if the symbol table is wrong or if functions are either non-contiguous or
overlapping. For more precision, use the ParseAPI library.

bool getAllFunctions(vector<Function *> &ret)

18

This method returns all functions in the object �le. Returns true on success and false if there
are no modules. The error value is set to No_Such_Function.

bool findVariablesByOffset(std::vector<Variable *> &ret,

const Offset offset)

This method returns a vector of Variables with the speci�ed o�set. There may be more than one
variable at an o�set if they have di�erent sizes. Returns true on success and false if there is no
matching variable. The error value is set to No_Such_Variable.

bool findVariablesByName(std::vector<Variable *> &ret,

const std::string name,

NameType nameType = anyName,

bool isRegex = false,

bool checkCase = true)

This method �nds and returns a vector of Variables whose names match the given pattern. The
nameType parameter determines which names are searched: mangled, pretty, typed, or any (note:
a Variable may not have a typed name). If the isRegex �ag is set a regular expression match is
performed with the symbol names. checkCase is applicable only if isRegex has been set. This
indicates if the case be considered while performing regular expression matching. ret contains the
list of matching Variables, if any. Returns true if it �nds variables that match the given name,
otherwise returns false. The error value is set to No_Such_Variable.

bool getAllVariables(vector<Variable *> &ret)

This method returns all variables in the object �le. Returns true on success and false if there
are no modules. The error value is set to No_Such_Variable.

bool findSymbol(vector <Symbol *> &ret,

const string name,

Symbol::SymbolType sType,

NameType nameType = anyName,

bool isRegex = false,

bool checkCase = false)

This method �nds and returns a vector of symbols with type sType whose names match the given
name. The nameType parameter determines which names are searched: mangled, pretty, typed,
or any. If the isRegex �ag is set a regular expression match is performed with the symbol names.
checkCase is applicable only if isRegex has been set. This indicates if the case be considered while
performing regular expression matching. ret contains the list of matched symbols if any. Returns
true if it �nds symbols with the given attributes. or else returns false. The error value is set to
No_Such_Function / No_Such_Variable/ No_Such_Module/ No_Such_Symbol based on the type.

19

const vector<Symbol *> *findSymbolByOffset(Offset offset)

Return a pointer to a vector of Symbols with the speci�ed o�set. The pointer belongs to Symtab

and should not be modi�ed or freed.

bool getAllSymbols(vector<Symbol *> &ret)

This method returns all symbols. Returns true on success and false if there are no symbols. The
error value is set to No_Such_Symbol.

bool getAllSymbolsByType(vector<Symbol *> &ret,

Symbol::SymbolType sType)

This method returns all symbols whose type matches the given type sType. Returns true

on success and false if there are no symbols with the given type. The error value is set to
No_Such_Symbol.

bool getAllUndefinedSymbols(std::vector<Symbol *> &ret)

This method returns all symbols that reference symbols in other �les (e.g., external functions or
variables). Returns true if there is at least one such symbol or else returns false with the error
set to No_Such_Symbol.

6.1.4 Region lookup

bool getCodeRegions(std::vector<Region *>&ret)

This method �nds all the code regions in the object �le. Returns true with ret containing the
code regions if there is at least one code region in the object �le or else returns false.

bool getDataRegions(std::vector<Region *>&ret)

This method �nds all the data regions in the object �le. Returns true with ret containing the
data regions if there is at least one data region in the object �le or else returns false.

bool getMappedRegions(std::vector<Region *>&ret)

This method �nds all the loadable regions in the object �le. Returns true with ret containing
the loadable regions if there is at least one loadable region in the object �le or else returns false.

20

bool getAllRegions(std::vector<Region *>&ret)

This method retrieves all the regions in the object �le. Returns true with ret containing the
regions.

bool getAllNewRegions(std::vector<Region *>&ret)

This method �nds all the new regions added to the object �le. Returns true with ret containing
the regions if there is at least one new region that is added to the object �le or else returns false.

bool findRegion(Region *®,

string sname)

Find a region (ELF section) wih name sname in the binary. Returns true if found, with reg set
to the region pointer. Otherwise returns false with reg set to NULL.

bool findRegion(Region *®,

const Offset addr,

const unsigned long size)

Find a region (ELF section) with a memory o�set of addr and memory size of size. Returns true
if found, with reg set to the region pointer. Otherwise returns false with reg set to NULL.

bool findRegionByEntry(Region *®,

const Offset soff)

Find a region (ELF section) with a memory o�set of addr. Returns true if found, with reg set
to the region pointer. Otherwise returns false with reg set to NULL.

Region *findEnclosingRegion(const Offset offset)

Find the region (ELF section) whose virtual address range contains offset. Returns the region if
found; otherwise returns NULL.

6.1.5 Insertion and modi�cation

bool emit(string file)

Creates a new �le using the speci�ed name that contains all changes made by the user.

21

bool addLibraryPrereq(string lib)

Add a library dependence to the �le such that when the �le is loaded, the library will be loaded
as well. Cannot be used for static binaries.

Function *createFunction(std::string name,

Offset offset,

size_t size,

Module *mod = NULL)

This method creates a Function and updates all necessary data structures (including creating
Symbols, if necessary). The function has the provided mangled name, o�set, and size, and is
added to the Module mod. Symbols representing the function are added to the static and dynamic
symbol tables. Returns the pointer to the new Function on success or NULL on failure.

Variable *createVariable(std::string name,

Offset offset,

size_t size,

Module *mod = NULL)

This method creates a Variable and updates all necessary data structures (including creating
Symbols, if necessary). The variable has the provided mangled name, o�set, and size, and is
added to the Module mod. Symbols representing the variable are added to the static and dynamic
symbol tables. Returns the pointer to the new Variable on success or NULL on failure.

bool addSymbol(Symbol *newsym)

This method adds a new symbol newsym to all of the internal data structures. The primary name
of the newsym must be a mangled name. Returns true on success and false on failure. A new
copy of newsym is not made. newsym must not be deallocated after adding it to symtabAPI. We
suggest using createFunction or createVariable when possible.

bool addSymbol(Symbol *newsym,

Symbol *referringSymbol)

This method adds a new dynamic symbol newsym which refers to referringSymbol to all of the
internal data structures. newsym must represent a dynamic symbol. The primary name of the
newsym must be a mangled name. All the required version names are allocated automatically.
Also if the referringSymbol belongs to a shared library which is not currently a dependency, the
shared library is added to the list of dependencies implicitly. Returns true on success and false

on failure. A new copy of newsym is not made. newsym must not be deallocated after adding it to
symtabAPI.

22

bool deleteFunction(Function *func)

This method deletes the Function func from all of symtab's data structures. It will not be available
for further queries. Return true on success and false if func is not owned by the Symtab.

bool deleteVariable(Variable *var)

This method deletes the variable var from all of symtab's data structures. It will not be available
for further queries. Return true on success and false if var is not owned by the Symtab.

bool deleteSymbol(Symbol *sym)

This method deletes the symbol sym from all of symtab's data structures. It will not be available
for further queries. Return true on success and false if func is not owned by the Symtab.

bool addRegion(Offset vaddr,

void *data,

unsigned int dataSize,

std::string name,

Region::RegionType rType_,

bool loadable = false,

unsigned long memAlign = sizeof(unsigned),

bool tls = false)

Creates a new region using the speci�ed parameters and adds it to the �le.

Offset getFreeOffset(unsigned size)

Find a contiguous region of unused space within the �le (which may be at the end of the �le) of
the speci�ed size and return an o�set to the start of the region. Useful for allocating new regions.

bool addRegion(Region *newreg);

Adds the provided region to the �le.

6.1.6 Catch and Exception block lookup

bool getAllExceptions(vector<ExceptionBlock *> &exceptions)

This method retrieves all the exception blocks in the Object �le. Returns false if there are no
exception blocks else returns true with exceptions containing a vector of ExceptionBlocks.

23

bool findException(ExceptionBlock &excp,

Offset addr)

This method returns the exception block in the binary at the o�set addr. Returns false if there is
no exception block at the given o�set else returns true with excp containing the exception block.

bool findCatchBlock(ExceptionBlock &excp,

Offset addr,

unsigned size = 0)

This method returns true if the address range [addr, addr+size] contains a catch block, with
excp pointing to the appropriate block, else returns false.

6.1.7 Symtab information

typedef enum {

obj_Unknown,

obj_SharedLib,

obj_Executable,

obj_RelocatableFile,

} ObjectType;

bool isCode(const Offset where) const

This method checks if the given o�set where belongs to the text section. Returns true if that is
the case or else returns false.

bool isData(const Offset where) const

This method checks if the given o�set where belongs to the data section. Returns true if that is
the case or else returns false.

bool isValidOffset(const Offset where) const

This method checks if the given o�set where is valid. For an o�set to be valid it should be aligned
and it should be a valid code o�set or a valid data o�set. Returns true if it succeeds or else returns
false.

24

6.1.8 Line number information

bool getAddressRanges(vector<pair<Offset, Offset> > & ranges,

string lineSource,

unsigned int LineNo)

This method returns the address ranges in ranges corresponding to the line with line number
lineNo in the source �le lineSource. Searches all modules for the given source. Return true if
at least one address range corresponding to the line number was found and returns false if none
found.

bool getSourceLines(vector<LineNoTuple> &lines,

Offset addressInRange)

This method returns the source �le names and line numbers corresponding to the given address
addressInRange. Searches all modules for the given source. Return true if at least one tuple
corresponding to the o�set was found and returns false if none found.

6.1.9 Type information

void parseTypesNow()

Forces SymtabAPI to perform type parsing instead of delaying it to when needed.

bool findType(Type *&type,

string name)

Performs a look up among all the built-in types, standard types and user-de�ned types and returns
a handle to the found type with name name. Returns true if a type is found with type containing
the handle to the type, else return false.

bool addType(Type * type)

Adds a new type type to symtabAPI. Return true on success.

static std::vector<Type *> * getAllstdTypes()

Returns all the standard types that normally occur in a program.

static std::vector<Type *> * getAllbuiltInTypes()

25

Returns all the built-in types de�ned in the binary.

bool findLocalVariable(vector<localVar *> &vars,

string name)

The method returns a list of local variables named name within the object �le. Returns true with
vars containing a list of localVar objects corresponding to the local variables if found or else
returns false.

bool findVariableType(Type *&type,

std::string name)

This method looks up a global variable with name name and returns its type attribute. Returns
true if a variable is found or returns false with type set to NULL.

typedef enum ... SymtabError

SymtabError can take one of the following values.

SymtabError enum Meaning

Obj_Parsing An error occurred during object parsing(internal error).
Syms_To_Functions An error occurred in converting symbols to functions(internal error).
Build_Function_Lists An error occurred while building function lists(internal error).
No_Such_Function No matching function exists with the given inputs.
No_Such_Variable No matching variable exists with the given inputs.
No_Such_Module No matching module exists with the given inputs.
No_Such_Symbol No matching symbol exists with the given inputs.
No_Such_Region No matching region exists with the given inputs.
No_Such_Member No matching member exists in the archive with the given inputs.
Not_A_File Binary to be parsed may be an archive and not a �le.
Not_An_Archive Binary to be parsed is not an archive.
Duplicate_Symbol Duplicate symbol found in symbol table.
Export_Error Error occurred during export of modi�ed symbol table.
Emit_Error Error occurred during generation of modi�ed binary.
Invalid_Flags Flags passed are invalid.
Bad_Frame_Data Stack walking DWARF information has bad frame data.
No_Frame_Entry No stack walking frame data found in debug information for this location.
Frame_Read_Error Failed to read stack frame data.
Multiple_Region_Matches Multiple regions match the provided data.
No_Error Previous operation did not result in failure.

static SymtabError getLastSymtabError()

26

This method returns an error value for the previously performed operation that resulted in a
failure. SymtabAPI sets a global error value in case of error during any operation. This call
returns the last error that occurred while performing any operation.

static string printError(SymtabError serr)

This method returns a detailed description of the enum value serr in human readable format.

6.2 Class Module

This class represents the concept of a single source �le. Currently, Modules are only identi�ed for the
executable �le; each shared library is made up of a single Module, ignoring any source �le information that
may be present. We also create a single module, called DEFAULT_MODULE, for each Symtab that contains
any symbols for which module information was unavailable. This may be compiler template code, or �les
produced without module information.

supportedLanguages Meaning

lang_Unknown Unknown source language
lang_Assembly Raw assembly code
lang_C C source code
lang_CPlusPlus C++ source code
lang_GnuCPlusPlus C++ with GNU extensions
lang_Fortran Fortran source code
lang_Fortran_with_pretty_debug Fortran with debug annotations
lang_CMFortran Fortran with CM extensions

Method name Return type Method description

isShared bool True if the module is for a shared library, false for an
executable.

fullName std::string & Name, including path, of the source �le represented by
the module.

�leName std::string & Name, not including path, of the source �le repre-
sented by the module.

language supportedLanguages The source language used by the Module.
addr O�set O�set of the start of the module, as reported by the

symbol table, assuming contiguous modules.
exec Symtab * Symtab object that contains the module.

6.2.1 Function, Variable, Symbol lookup

typedef enum {

mangledName,

prettyName,

27

typedName,

anyName

} NameType;

bool getAllFunctions(vector<Function *> &ret)

Returns all functions located within the PC address ranges covered by this module.

bool findVariablesByOffset(std::vector<Variable *> &ret,

const Offset offset)

This method returns a vector of Variables with the speci�ed o�set. There may be more than one
variable at an o�set if they have di�erent sizes. Returns true on success and false if there is no
matching variable. The error value is set to No_Such_Variable.

bool findVariablesByName(vector<Function> &ret,

const string &name,

Symtab::NameType nameType,

bool isRegex = false,

bool checkCase = true)

This method �nds and returns a vector of Variables whose names match the given pattern. The
nameType parameter determines which names are searched: mangled, pretty, typed, or any (note:
a Variable may not have a typed name). If the isRegex �ag is set a regular expression match is
performed with the symbol names. checkCase is applicable only if isRegex has been set. This
indicates if the case be considered while performing regular expression matching. ret contains the
list of matching Variables, if any. Returns true if it �nds variables that match the given name,
otherwise returns false. The error value is set to No_Such_Variable.

bool getAllSymbols(vector<Symbol *> &ret)

This method returns all symbols. Returns true on success and false if there are no symbols. The
error value is set to No_Such_Symbol.

bool getAllSymbolsByType(vector<Symbol *> &ret,

Symbol::SymbolType sType)

This method returns all symbols whose type matches the given type sType. Returns true

on success and false if there are no symbols with the given type. The error value is set to
No_Such_Symbol.

28

6.2.2 Line number information

bool getAddressRanges(vector<pair<unsigned long, unsigned long> > & ranges,

string lineSource, unsigned int lineNo)

This method returns the address ranges in ranges corresponding to the line with line number
lineNo in the source �le lineSource. Searches only this module for the given source. Return
true if at least one address range corresponding to the line number was found and returns false if
none found.

bool getSourceLines(vector<Statement *> &lines,

Offset addressInRange)

This method returns the source �le names and line numbers corresponding to the given address
addressInRange. Searches only this module for the given source. Return true if at least one tuple
corresponding to the o�set was found and returns false if none found. The Statement class used
to be named LineNoTuple; backwards compatibility is provided via typedef.

LineInformation *getLineInformation() const

This method returns the line map (section 7.1) corresponding to the module. Returns NULL if
there is no line information existing for the module.

bool getStatements(std::vector<Statement *> &statements)

Returns all line information (section 7.2) available for the module.

6.2.3 Type information

bool findType(Type * &type,

string name)

This method performs a look up and returns a handle to the named type. This method searches
all the built-in types, standard types and user-de�ned types within the module. Returns true if
a type is found with type containing the handle to the type, else return false.

bool findLocalVariable(vector<localVar *> &vars,

string name)

The method returns a list of local variables within the module with name name. Returns true

with vars containing a list of localVar objects corresponding to the local variables if found or else
returns false.

29

bool findVariableType(Type *&type,

std::string name)

This method looks up a global variable with name name and returns its type attribute. Returns
true if a variable is found or returns false with type set to NULL.

6.3 Class FunctionBase

The FunctionBase class provides a common interface that can represent either a regular function or an
inlined function.

Method name Return type Method description

getModule const Module * Module this function belongs to.
getSize unsigned Size encoded in the symbol table; may not be actual

function size.
getRegion Region * Region containing this function.
getReturnType Type * Type representing the return type of the function.
getName std::string Returns primary name of the function (�rst mangled

name or DWARF name)

bool setModule (Module *module)

This function changes the module to which the function belongs to module. Returns true if it
succeeds.

bool setSize (unsigned size)

This function changes the size of the function to size. Returns true if it succeeds.

bool setOffset (Offset offset)

The method changes the o�set of the function to offset. Returns true if it succeeds.

bool addMangledName(string name,

bool isPrimary)

This method adds a mangled name name to the function. If isPrimary is true then it becomes
the default name for the function. This method returns true on success and false on failure.

bool addPrettyName(string name,

bool isPrimary)

30

This method adds a pretty name name to the function. If isPrimary is true then it becomes the
default name for the function. This method returns true on success and false on failure.

bool addTypedName(string name,

bool isPrimary)

This method adds a typed name name to the function. If isPrimary is true then it becomes the
default name for the function. This method returns true on success and false on failure.

bool getLocalVariables(vector<localVar *> &vars)

This method returns the local variables in the function. vars contains the list of variables found.
If there is no debugging information present then it returns false with the error code set to
NO_DEBUG_INFO accordingly. Otherwise it returns true.

std::vector<VariableLocation> &getFramePtr()

This method returns a list of frame pointer o�sets (abstract top of the stack) for the function. See
the VariableLocation class description for more information.

bool getParams(vector<localVar *> ¶ms)

This method returns the parameters to the function. params contains the list of parameters.
If there is no debugging information present then it returns false with the error code set to
NO_DEBUG_INFO accordingly. Returns true on success.

bool findLocalVariable(vector<localVar *> &vars,

string name)

This method returns a list of local variables within a function that have name name. vars contains
the list of variables found. Returns true on success and false on failure.

FunctionBase* getInlinedParent()

Gets the function that this function is inlined into, if any. Returns NULL if there is no parent.

const InlineCollection& getInlines()

Gets the set of functions inlined into this one (possibly empty).

31

6.4 Class Function

The Function class represents a collection of symbols that have the same address and a type of ST_FUNCTION.
When appropriate, use this representation instead of the underlying Symbol objects.

Method name Return type Method description

getModule const Module * Module this function belongs to.
getO�set O�set O�set in the �le associated with the function.
getSize unsigned Size encoded in the symbol table; may not be actual

function size.
mangled_names_begin Aggregate::name_iter Beginning of a range of unique names of symbols point-

ing to this function.
mangled_names_end Aggregate::name_iter End of a range of unique names of symbols pointing to

this function.
pretty_names_begin Aggregate::name_iter As above, but pretti�ed with the demangler.
pretty_names_end Aggregate::name_iter As above, but pretti�ed with the demangler.
typed_names_begin Aggregate::name_iter As above, but including full type strings.
typed_names_end Aggregate::name_iter As above, but including full type strings.
getRegion Region * Region containing this function.
getReturnType Type * Type representing the return type of the function.

bool getSymbols(vector<Symbol *> &syms) const

This method returns the vector of Symbols that refer to the function.

bool setModule (Module *module)

This function changes the module to which the function belongs to module. Returns true if it
succeeds.

bool setSize (unsigned size)

This function changes the size of the function to size. Returns true if it succeeds.

bool setOffset (Offset offset)

The method changes the o�set of the function to offset. Returns true if it succeeds.

bool addMangledName(string name,

bool isPrimary)

This method adds a mangled name name to the function. If isPrimary is true then it becomes
the default name for the function. This method returns true on success and false on failure.

32

bool addPrettyName(string name,

bool isPrimary)

This method adds a pretty name name to the function. If isPrimary is true then it becomes the
default name for the function. This method returns true on success and false on failure.

bool addTypedName(string name,

bool isPrimary)

This method adds a typed name name to the function. If isPrimary is true then it becomes the
default name for the function. This method returns true on success and false on failure.

bool getLocalVariables(vector<localVar *> &vars)

This method returns the local variables in the function. vars contains the list of variables found.
If there is no debugging information present then it returns false with the error code set to
NO_DEBUG_INFO accordingly. Otherwise it returns true.

std::vector<VariableLocation> &getFramePtr()

This method returns a list of frame pointer o�sets (abstract top of the stack) for the function. See
the VariableLocation class description for more information.

bool getParams(vector<localVar *> ¶ms)

This method returns the parameters to the function. params contains the list of parameters.
If there is no debugging information present then it returns false with the error code set to
NO_DEBUG_INFO accordingly. Returns true on success.

bool findLocalVariable(vector<localVar *> &vars,

string name)

This method returns a list of local variables within a function that have name name. vars contains
the list of variables found. Returns true on success and false on failure.

6.5 Class InlinedFunction

The InlinedFunction class represents an inlined function, as found in DWARF information. Its interface
is almost entirely inherited from FunctionBase.

std::pair<std::string, Dyninst::Offset> getCallsite()

Returns the �le and line corresponding to the call site of an inlined function.

33

6.6 Class Variable

The Variable class represents a collection of symbols that have the same address and represent data.

Method name Return type Method description

getO�set O�set O�set associated with this variable.
getSize unsigned Size of this variable in the symbol table.
mangled_names_begin Aggregate::name_iter Beginning of a range of unique names of symbols point-

ing to this variable.
mangled_names_end Aggregate::name_iter End of a range of unique names of symbols pointing to

this variable.
getType Type * Type of this variable, if known.
getModule const Module * Module that contains this variable.
getRegion Region * Region that contains this variable.

bool getSymbols(vector<Symbol *> &syms) const

This method returns the vector of Symbols that refer to the variable.

bool setModule (Module *module)

This method changes the module to which the variable belongs. Returns true if it succeeds.

bool setSize (unsigned size)

This method changes the size of the variable to size. Returns true if it succeeds.

bool setOffset (Offset offset)

The method changes the o�set of the variable. Returns true if it succeeds.

bool addMangledName(string name,

bool isPrimary)

This method adds a mangled name name to the variable. If isPrimary is true then it becomes
the default name for the variable. This method returns true on success and false on failure.

bool addPrettyName(string name,

bool isPrimary)

This method adds a pretty name name to the variable. If isPrimary is true then it becomes the
default name for the variable. This method returns true on success and false on failure.

34

bool addTypedName(string name,

bool isPrimary)

This method adds a typed name name to the variable. If isPrimary is true then it becomes the
default name for the variable. This method returns true on success and false on failure.

bool setType(Type *type)

Sets the type of the variable to type.

6.7 Class Symbol

The Symbol class represents a symbol in the object �le. This class holds the symbol information such as
the mangled, pretty and typed names, the module in which it is present, type, linkage, o�set and size.

SymbolType Meaning

ST_UNKNOWN Unknown type
ST_FUNCTION Function or other executable code sequence
ST_OBJECT Variable or other data object
ST_MODULE Source �le declaration
ST_SETION Region declaration
ST_TLS Thread-local storage declaration
ST_DELETED Deleted symbol
ST_NOTYPE Miscellaneous symbol

SymbolLinkage Meaning

SL_UNKNOWN Unknown linkage
SL_GLOBAL Process-global symbol
SL_LOCAL Process-local (e.g., static) symbol
SL_WEAK Alternate name for a function or variable

The following two types are platform-speci�c:

typedef enum {

SV_UNKNOWN,

SV_DEFAULT,

SV_INTERNAL,

SV_HIDDEN,

SV_PROTECTED

} SymbolVisibility;

typedef enum {

35

TAG_UNKNOWN,

TAG_USER,

TAG_LIBRARY,

TAG_INTERNAL

} SymbolTag;

Method name Return type Method description

getMangledName string Raw name of the symbol in the symbol table, including
name mangling.

getPrettyName string Demangled name of the symbol with parameters (for func-
tions) removed.

getTypedName string Demangled name of the symbol including full function pa-
rameters.

getModule Module * The module, if any, that contains the symbol.
getType SymbolType The symbol type (as de�ned above) of the symbol.
getLinkage SymbolLinkage The linkage (as de�ned above) of the symbol.
getVisibility SymbolVisibility The visibility (as de�ned above) of the symbol.
tag SymbolTag The tag (as de�ned above) of the symbol.
getO�set O�set The o�set of the object the symbols refers to.
getSize unsigned The size of the object the symbol refers to.
getRegion Region * The region containing the symbol.
getIndex int The index of the symbol within the symbol table.
getStrIndex int The index of the symbol name in the string table.
isInDynSymtab bool If true, the symbol is dynamic and can be used as the target

of an intermodule reference. Implies isInSymtab is false.
isInSymtab bool If true, the symbol is static. Implies isInDynSymtab is

false.
isAbsolute bool If true, the o�set encoded in the symbol is an absolute

value rather than an o�set.
isFunction bool If true, the symbol refers to a function.
getFunction Function * The Function that contains this symbol if such a Function

exists.
isVariable bool If true, the symbol refers to a variable.
getVariable Variable * The Variable that contains this symbol if such a Variable

exists.
getSymtab Symtab * The Symtab that contains this symbol.
getPtrO�set O�set For binaries with an OPD section, the o�set in the OPD

that contains the function pointer data structure for this
symbol.

getLocalTOC O�set For platforms with a TOC register, the expected TOC for
the object referred to by this symbol.

isCommonStorage bool True if the symbol represents a common section (Fortran).

SYMTAB_EXPORT Symbol(const std::string& name,

SymbolType type,

SymbolLinkage linkage,

SymbolVisibility visibility,

Offset offset,

Module *module = NULL,

36

Region *region = NULL,

unsigned size = 0,

bool dyamic = false,

bool absolute = false,

int index = -1,

int strindex = -1,

bool commonStorage = false)

Symbol creation interface:

name The mangled name of the symbol.

type The type of the symbol as speci�ed above.

linkage The linkage of the symbol as speci�ed above.

visibility The visibility of the symbol as speci�ed above.

o�set The o�set within the �le that the symbol refers to.

module The source code module the symbol should belong to; default is no module.

region The region the symbol belongs to; if left unset this will be determined if a new binary is generated.

size The size of the object the symbol refers to; defaults to 0.

dynamic If true, the symbol belongs to the dynamic symbol table (ELF) and may be used as the target
of inter-module references.

absolute If true, the o�set speci�ed is treated as an absolute value rather than an o�set.

index The index in the symbol table. If left unset, it will be determined when generating a new binary.

strindex The index in the string table that contains the symbol name. If left unset, it will be determined
when generating a new binary.

commonStorage If true, the symbol references common storage (Fortran).

bool getVersionFileName(std::string &fileName)

This method retrieves the �le name in which this symbol is present. Returns false if this symbol
does not have any version information present otherwise returns true.

bool getVersions(std::vector<std::string> *&vers)

This method retrieves all the version names for this symbol. Returns false if the symbol does
not have any version information present.

bool getVersionNum(unsigned &verNum)

This method retrieves the version number of the symbol. Returns false if the symbol does not
have any version information present.

37

6.7.1 Symbol modi�cation

Most elements of a Symbol can be modi�ed using the functions below. Each returns true on success and
false otherwise.

bool setSize (unsigned size)

bool setOffset (Offset newOffset)

bool setMangledName (string name)

bool setType (SymbolType sType)

bool setModule (Module *module)

bool setRegion (Region *region)

bool setDynamic (bool dyn)

bool setAbsolute (bool absolute)

bool setCommonStorage (bool common)

bool setFunction (Function *func)

bool setVariable (Variable *var)

bool setIndex (int index)

bool setStrIndex (int index)

bool setPtrOffset (Offset ptr)

bool setLocalTOC (Offset toc)

bool setVersionNum (unsigned num)

bool setVersionFileName (std::string &fileName)

bool setVersions (std::vector<std::string> &vers)

6.8 Class Archive

This is used only on ELF platforms. This class represents an archive. This class has information of all the
members in the archives.

static bool openArchive(Archive *&img,

string name)

This factory method creates a new Archive object for an archive �le on disk. This object serves
as a handle to the parsed archive �le. name represents the name of the archive to be parsed. The
Archive object is returned in img if the parsing succeeds. This method returns false if the given
�le is not an archive. The error is set to Not_An_Archive. This returns true if the archive is
parsed without an error. printSymtabError() should be called to get more error details.

static bool openArchive(Archive *&img,

char *mem_image,

size_t size)

This factory method creates a new Archive object for an archive �le in memory. This object
serves as a handle to the parsed archive �le. mem_image represents the pointer to the archive to be
parsed. size represents the size of the memory image. The Archive object is returned in img if the
parsing succeeds. This method returns false if the given �le is not an archive. The error is set to

38

Not_An_Archive. This returns true if the archive is parsed without an error. printSymtabError()
should be called to get more error details. This method is not supported currently on all ELF
platforms.

bool getMember(Symtab *&img,

string member_name)

This method returns the member object handle if the member exists in the archive. img corre-
sponds to the object handle for the member. This method returns false if the member with name
member_name does not exist else returns true.

bool getMemberByOffset(Symtab *&img,

Offset memberOffset)

This method returns the member object handle if the member exists at the start o�set memberOffset
in the archive. img corresponds to the object handle for the member. This method returns false
if the member with name member_name does not exist else returns true.

bool getAllMembers(vector <Symtab *> &members)

This method returns all the member object handles in the archive. Returns true on success with
members containing the Symtab Objects for all the members in the archive.

bool isMemberInArchive(string member_name)

This method returns true if the member with name member_name exists in the archive or else
returns false.

bool findMemberWithDefinition(Symtab *&obj,

string name)

This method retrieves the member in an archive which contains the de�nition to a symbol with
mangled name name. Returns true with obj containing the Symtab handle to that member or else
returns false.

static SymtabError getLastError()

This method returns an error value for the previously performed operation that resulted in a
failure. SymtabAPI sets a global error value in case of error during any operation. This call
returns the last error that occurred while performing any operation.

static string printError(SymtabError serr)

This method returns a detailed description of the enum value serr in human readable format.

39

6.9 Class Region

This class represents a contiguous range of code or data as encoded in the object �le. For ELF, regions
represent ELF sections.

perm_t Meaning

RP_R Read-only data
RP_RW Read/write data
RP_RX Read-only code
RP_RWX Read/write code

RegionType Meaning

RT_TEXT Executable code
RT_DATA Read/write data
RT_TEXTDATA Mix of code and data
RT_SYMTAB Static symbol table
RT_STRTAB String table used by the symbol table
RT_BSS 0-initialized memory
RT_SYMVERSIONS Versioning information for symbols
RT_SYMVERDEF Versioning information for symbols
RT_SYMVERNEEDED Versioning information for symbols
RT_REL Relocation section
RT_RELA Relocation section
RT_PLTREL Relocation section for PLT (inter-library references) entries
RT_PLTRELA Relocation section for PLT (inter-library references) entries
RT_DYNAMIC Decription of library dependencies
RT_HASH Fast symbol lookup section
RT_GNU_HASH GNU-speci�c fast symbol lookup section
RT_OTHER Miscellaneous information

40

Method name Return type Method description

getRegionNumber unsigned Index of the region in the �le, starting at 0.
getRegionName std::string Name of the region (e.g. .text, .data).
getPtrToRawData void * Read-only pointer to the region's raw data bu�er.
getDiskO�set O�set O�set within the �le where the region begins.
getDiskSize unsigned long Size of the region's data in the �le.
getMemO�set O�set Location where the region will be loaded into memory,

modi�ed by the �le's base load address.
getMemSize unsigned long Size of the region in memory, including zero padding.
isBSS bool Type query for uninitialized data regions (zero disk size,

non-zero memory size).
isText bool Type query for executable code regions.
isData bool Type query for initialized data regions.
getRegionPermissions perm_t Permissions for the region; perm_ t is de�ned above.
getRegionType RegionType Type of the region as de�ned above.
isLoadable bool True if the region will be loaded into memory (e.g., code

or data), false otherwise (e.g., debug information).
isDirty bool True if the region's raw data bu�er has been modi�ed by

the user.

static Region *createRegion(Offset diskOff,

perm_t perms,

RegionType regType,

unsigned long diskSize = 0,

Offset memOff = 0,

unsigned long memSize = 0,

std::string name = "",

char *rawDataPtr = NULL,

bool isLoadable = false,

bool isTLS = false,

unsigned long memAlign = sizeof(unsigned))

This factory method creates a new region with the provided arguments. The memOff and memSize

parameters identify where the region should be loaded in memory (modi�ed by the base address of
the �le); if memSize is larger than diskSize the remainder will be zero-padded (e.g., bss regions).

bool isOffsetInRegion(const Offset &offset) const

Return true if the o�set falls within the region data.

void setRegionNumber(unsigned index) const

Sets the region index; the value must not overlap with any other regions and is not checked.

bool setPtrToRawData(void *newPtr,

unsigned long rawsize)

41

Set the raw data pointer of the region to newPtr. rawsize represents the size of the raw data
bu�er. Returns true if success or false when unable to set/change the raw data of the region.
Implicitly changes the disk and memory sizes of the region.

bool setRegionPermissions(perm_t newPerms)

This sets the regions permissions to newPerms. Returns true on success.

bool setLoadable(bool isLoadable)

This method sets whether the region is loaded into memory at load time. Returns true on success.

bool addRelocationEntry(Offset relocationAddr,

Symbol *dynref,

unsigned long relType,

Region::RegionType rtype = Region::RT_REL)

Creates and adds a relocation entry for this region. The symbol dynref represents the symbol
used by he relocation, relType is the (platform-speci�c) relocation type, and rtype represents
whether the relocation is REL or RELA (ELF-speci�c).

vector<relocationEntry> &getRelocations()

Get the vector of relocation entries that will modify this region. The vector should not be modi�ed.

bool addRelocationEntry(const relocationEntry& rel)

Add the provided relocation entry to this region.

bool patchData(Offset off,

void *buf,

unsigned size);

Patch the raw data for this region. buf represents the bu�er to be patched at o�set off and size
size.

42

6.9.1 REMOVED

The following methods were removed since they were inconsistent and dangerous to use.

Offset getRegionAddr() const

Please use getDiskOffset or getMemOffset instead, as appropriate.

unsigned long getRegionSize() const

Please use getDiskSize or getMemSize instead, as appropriate.

6.10 Relocation Information

This class represents object relocation information.

Offset target_addr() const

Speci�es the o�set that will be overwritten when relocations are processed.

Offset rel_addr() const

Speci�es the o�set of the relocation itself.

Offset addend() const

Speci�es the value added to the relocation; whether this value is used or not is speci�c to the
relocation type.

const std::string name() const

Speci�es the user-readable name of the relocation.

Symbol *getDynSym() const

Speci�es the symbol whose �nal address will be used in the relocation calculation. How this
address is used is speci�c to the relocation type.

unsigned long getRelType() const

Speci�es the platform-speci�c relocation type.

43

6.11 Class ExceptionBlock

This class represents an exception block present in the object �le. This class gives all the information
pertaining to that exception block.

Method name Return type Method description

hasTry bool True if the exception block has a try block.
tryStart O�set Start of the try block if it exists, else 0.
tryEnd O�set End of the try block if it exists, else 0.
trySize O�set Size of the try block if it exists, else 0.
catchStart O�set Start of the catch block.

bool contains(Offset addr) const

This method returns true if the o�set addr is contained with in the try block. If there is no try
block associated with this exception block or the o�set does not fall within the try block, it returns
false.

6.12 Class localVar

This represents a local variable or parameter of a function.

Method name Return type Method description

getName string & Name of the local variable or parameter.
getType Type * Type associated with the variable.
getFileName string & File where the variable was declared, if known.
getLineNum int Line number where the variable was declared, if known.

vector<VariableLocation> &getLocationLists()

A local variable can be in scope at di�erent positions and based on that it is accessible in di�erent
ways. Location lists provide a way to encode that information. The method retrieves the location
list, speci�ed in terms of VariableLocation structures (section 6.13) where the variable is in
scope.

6.13 Class VariableLocation

The VariableLocation class is an encoding of the location of a variable in memory or registers.

typedef enum {

storageUnset,

storageAddr,

storageReg,

44

storageRegOffset

} storageClass;

typedef enum {

storageRefUnset,

storageRef,

storageNoRef

} storageRefClass;

struct VariableLocation {

storageClass stClass;

storageRefClass refClass;

MachRegister mr_reg;

long frameOffset;

Address lowPC;

Address hiPC;

}

A VariableLocation is valid within the address range represented by lowPC and hiPC. If these are 0 and
(Address) -1, respectively, the VariableLocation is always valid.

The location represented by the VariableLocation can be determined by the user as follows:

� stClass == storageAddr

refClass == storageRef The frameO�set member contains the address of a pointer to the variable.

refClass == storageNoRef The frameO�set member contains the address of the variable.

� stClass == storageReg

refClass == storageRef The register named by mr_reg contains the address of the variable.

refClass == storageNoRef The register named by mr_reg member contains the variable.

� stClass == storageRegO�set

refClass == storageRef The address computed by adding frameO�set to the contents of mr_reg
contains a pointer to the variable.

refClass == storageNoRef The address computed by adding frameO�set to the contents of
mr_reg contains the variable.

7 API Reference - Line Number Interface

This section describes the line number interface for the SymtabAPI library. Currently this interface has
the following capabilities:

� Look up address ranges for a given line number.

� Look up source lines for a given address.

� Add new line information. This information will be available for lookup, but will not be included
with an emitted object �le.

45

In order to look up or add line information, the user/application must have already parsed the object �le
and should have a Symtab handle to the object �le. For more information on line information lookups
through the Symtab class refer to Section 6. The rest of this section describes the classes that are part of
the line number interface.

7.1 Class LineInformation

This class represents an entire line map for a module. This contains mappings from a line number within
a source to the address ranges.

bool getAddressRanges(const char * lineSource,

unsigned int LineNo,

std::vector<AddressRange> & ranges)

This methos returns the address ranges in ranges corresponding to the line with line number
lineNo in the source �le lineSource. Searches within this line map. Return true if at least one
address range corresponding to the line number was found and returns false if none found.

bool getSourceLines(Offset addressInRange,

std::vector<Statement *> & lines)

bool getSourceLines(Offset addressInRange,

std::vector<LineNoTuple> & lines)

These methods returns the source �le names and line numbers corresponding to the given address
addressInRange. Searches within this line map. Return true if at least one tuple corresponding
to the o�set was found and returns false if none found. Note that the order of arguments is
reversed from the corresponding interfaces in Module and Symtab.

bool addLine(const std::string & lineSource,

unsigned int lineNo,

unsigned int lineOffset,

Offset lowInclusiveAddr,

Offset highExclusiveAddr)

This method adds a new line to the line Map. lineSource represents the source �le name. lineNo
represents the line number.

bool addAddressRange(Offset lowInclusiveAddr,

Offset highExclusiveAddr,

const char* lineSource,

unsigned int lineNo,

unsigned int lineOffset = 0);

46

This method adds an address range [lowInclusiveAddr, highExclusiveAddr) for the line with
line number lineNo in source �le lineSource.

LineInformation::const_iterator begin() const

This method returns an iterator pointing to the beginning of the line information for the module.
This is useful for iterating over the entire line information present in a module. An example
described in Section 7.3 gives more information on how to use begin() for iterating over the line
information.

LineInformation::const_iterator end() const

This method returns an iterator pointing to the end of the line information for the module. This
is useful for iterating over the entire line information present in a module. An example described
in Section 7.3 gives more information on how to use end() for iterating over the line information.

7.2 Class Statement

A Statement is the base representation of line information.

Method name Return type Method description

startAddr O�set Starting address of this line in the �le.
endAddr O�set Ending address of this line in the �le.
getFile std::string File that contains the line.
getLine unsigned int Line number.
getColumn unsigned int Starting column number.

For backwards compatibility, this class may also be referred to as a LineNoTuple, and provides the following
legacy member variables. They should not be used and will be removed in a future version of SymtabAPI.

Member Return type Method description

�rst const char * Equivalent to getFile.
second unsigned int Equivalent to getLine.
column unsigned int Equivalent to getColumn.

7.3 Iterating over Line Information

The LineInformation class also provides the ability for iterating over its data (line numbers and their
corresponding address ranges). The following example shows how to iterate over the line information for a
given module using SymtabAPI.

//Example showing how to iterate over the line information for a given module.
using namespace Dyninst;
using namespace SymtabAPI;

47

5 //Obj represents a handle to a parsed object file using symtabAPI
//Module handle for the module
Module *mod;

//Find the module \lq foo\rq within the object.
10 for(auto *m : findModulesByName("foo")) {

// Get the Line Information for module foo.
LineInformation *info = m=>getLineInformation();

15 //Iterate over the line information
LineInformation::const_iterator iter;
for(iter = info=>begin(); iter != info=>end(); iter++)
{
// First component represents the address range for the line

20 const std::pair<Offset, Offset> addrRange = iter=>first;

//Second component gives information about the line itself.
LineNoTuple lt = iter=>second;
}

25 }

8 API Reference - Type Interface

This section describes the type interface for the SymtabAPI library. Currently this interface has the
following capabilities:

� Look up types within an object �le.

� Extend the types to create new types and add them to the Symtab �le representation. These types
will be available for lookup but will not be added if a new object �le is produced.

The rest of the section describes the classes that are part of the type interface.

8.1 Class Type

The class Type represents the types of variables, parameters, return values, and functions. Instances of this
class can represent language prede�ned types (e.g. int, float), already de�ned types in the Object File or
binary (e.g., structures compiled into the binary), or newly created types (created using the create factory
methods of the corresponding type classes described later in this section) that are added to SymtabAPI by
the user.

As described in Section 2.2, this class serves as a base class for all the other classes in this interface. An
object of this class is returned from type look up operations performed through the Symtab class described
in Section 6. The user can then obtain the speci�c type object from the generic Type class object. The
following example shows how to get the speci�c object from a given Type object returned as part of a look
up operation.

48

//Example shows how to retrieve a structure type object from a given ‘‘Type’’ object
using namespace Dyninst;
using namespace SymtabAPI;

5 //Obj represents a handle to a parsed object file using symtabAPI
//Find a structure type in the object file
Type *structType = obj=>findType(‘‘structType1’’);

// Get the specific typeStruct object
10 typeStruct *stType = structType=>isStructType();

string &getName()

This method returns the name associated with this type. Each of the types is represented by a
symbolic name. This method retrieves the name for the type. For example, in the example above
"structType1" represents the name for the structType object.

bool setName(string zname)

This method sets the name of this type to name. Returns true on success and false on failure.

typedef enum{

dataEnum,

dataPointer,

dataFunction,

dataSubrange,

dataArray,

dataStructure,

dataUnion,

dataCommon,

dataScalar,

dataTypedef,

dataReference,

dataUnknownType,

dataNullType,

dataTypeClass

} dataClass;

dataClass getDataClass()

This method returns the data class associated with the type. This value should be used to convert
this generic type object to a speci�c type object which o�ers more functionality by using the
corresponding query function described later in this section. For example, if this method returns
dataStructure then the isStructureType() should be called to dynamically cast the Type object
to the typeStruct object.

49

typeId_t getID()

This method returns the ID associated with this type. Each type is assigned a unique ID within
the object �le. For example an integer scalar built-in type is assigned an ID -1.

unsigned getSize()

This method returns the total size in bytes occupied by the type.

typeEnum *getEnumType()

If this Type hobject represents an enum type, then return the object casting the Type object to
typeEnum otherwise return NULL.

typePointer *getPointerType()

If this Type object represents an pointer type, then return the object casting the Type object to
typePointer otherwise return NULL.

typeFunction *getFunctionType()

If this Type object represents an Function type, then return the object casting the Type object to
typeFunction otherwise return NULL.

typeRange *getSubrangeType()

If this Type object represents a Subrange type, then return the object casting the Type object to
typeSubrange otherwise return NULL.

typeArray *getArrayType()

If this Type object represents an Array type, then return the object casting the Type object to
typeArray otherwise return NULL.

typeStruct *getStructType()

If this Type object represents a Structure type, then return the object casting the Type object to
typeStruct otherwise return NULL.

50

typeUnion *getUnionType()

If this Type object represents a Union type, then return the object casting the Type object to
typeUnion otherwise return NULL.

typeScalar *getScalarType()

If this Type object represents a Scalar type, then return the object casting the Type object to
typeScalar otherwise return NULL.

typeCommon *getCommonType()

If this Type object represents a Common type, then return the object casting the Type object to
typeCommon otherwise return NULL.

typeTypedef *getTypedefType()

If this Type object represents a TypeDef type, then return the object casting the Type object to
typeTypedef otherwise return NULL.

typeRef *getRefType()

If this Type object represents a Reference type, then return the object casting the Type object to
typeRef otherwise return NULL.

8.2 Class typeEnum

This class represents an enumeration type containing a list of constants with values. This class is derived
from Type, so all those member functions are applicable. typeEnum inherits from the Type class.

static typeEnum *create(string &name,

vector<pair<string, int> *> &consts,

Symtab *obj = NULL)

static typeEnum *create(string &name,

vector<string> &constNames,

Symtab *obj)

These factory methods create a new enumerated type. There are two variations to this function.
consts supplies the names and Id's of the constants of the enum. The �rst variant is used when
user-de�ned identi�ers are required; the second variant is used when system-de�ned identi�ers will
be used. The newly created type is added to the Symtab object obj. If obj is NULL the type is not
added to any object �le, but it will be available for further queries.

51

bool addConstant(const string &constname,

int value)

This method adds a constant to an enum type with name constName and value value. Returns
true on success and false on failure.

std::vector<std::pair<std::string, int> > &getConstants();

This method returns the vector containing the enum constants represented by a (name, value)
pair of the constant.

bool setName(const char* name)

This method sets the new name of the enum type to name. Returns true if it succeeds, else returns
false.

bool isCompatible(Type *type)

This method returns true if the enum type is compatible with the given type type or else returns
false.

8.3 Class typeFunction

This class represents a function type, containing a list of parameters and a return type. This class is derived
from Type, so all the member functions of class Type are applicable. typeFunction inherits from the Type

class.

static typeFunction *create(string &name,

Type *retType,

vector<Type *> ¶mTypes,

Symtab *obj = NULL)

This factory method creates a new function type with name name. retType represents the return
type of the function and paramTypes is a vector of the types of the parameters in order. The the
newly created type is added to the Symtab object obj. If obj is NULL the type is not added to any
object �le, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the function type is compatible with the given type type or else
returns false.

52

bool addParam(Type *type)

This method adds a new function parameter with type type to the function type. Returns true
if it succeeds, else returns false.

Type *getReturnType() const

This method returns the return type for this function type. Returns NULL if there is no return
type associated with this function type.

bool setRetType(Type *rtype)

This method sets the return type of the function type to rtype. Returns true if it succeeds, else
returns false.

bool setName(string &name)

This method sets the new name of the function type to name. Returns true if it succeeds, else
returns false.

vector< Type *> &getParams() const

This method returns the vector containing the individual parameters represented by their types
in order. Returns NULL if there are no parameters to the function type.

8.4 Class typeScalar

This class represents a scalar type. This class is derived from Type, so all the member functions of class
Type are applicable. typeScalar inherits from the Type class.

static typeScalar *create(string &name, int size, Symtab *obj = NULL)

This factory method creates a new scalar type. The name �eld is used to specify the name of the
type, and the size parameter is used to specify the size in bytes of each instance of the type. The
newly created type is added to the Symtab object obj. If obj is NULL the type is not added to any
object �le, but it will be available for further queries.

bool isSigned()

This method returns true if the scalar type is signed or else returns false.

53

bool isCompatible(Type *type)

This method returns true if the scalar type is compatible with the given type type or else returns
false.

8.5 Class Field

This class represents a �eld in a container. For e.g. a �eld in a structure/union type.

typedef enum {

visPrivate,

visProtected,

visPublic,

visUnknown

} visibility_t;

A handle for identifying the visibility of a certain Field in a container type. This can represent
private, public, protected or unknown(default) visibility.

Field(string &name,

Type *type,

visibility_t vis = visUnknown)

This constructor creates a new �eld with name name, type type and visibility vis. This newly
created Field can be added to a container type.

const string &getName()

This method returns the name associated with the �eld in the container.

Type *getType()

This method returns the type associated with the �eld in the container.

int getOffset()

This method returns the o�set associated with the �eld in the container.

visibility_t getVisibility()

This method returns the visibility associated with a �eld in a container. This returns visPublic
for the variables within a common block.

54

8.6 Class �eldListType

This class represents a container type. It is one of the three categories of types as described in Section
2.2. The structure and the union types fall under this category. This class is derived from Type, so all the
member functions of class Type are applicable. fieldListType inherits from the Type class.

vector<Field *> *getComponents()

This method returns the list of all �elds present in the container. This gives information about
the name, type and visibility of each of the �elds. Returns NULL of there are no �elds.

void addField(std::string fieldname,

Type *type,

int offsetVal = -1,

visibility_t vis = visUnknown)

This method adds a new �eld at the end to the container type with �eld name fieldname, type
type and type visibility vis.

void addField(unsigned num,

std::string fieldname,

Type *type,

int offsetVal = -1,

visibility_t vis = visUnknown)

This method adds a �eld after the �eld with number num with �eld name fieldname, type type

and type visibility vis.

void addField(Field *fld)

This method adds a new �eld fld to the container type.

void addField(unsigned num,

Field *fld)

This method adds a �eld fld after �eld num to the container type.

8.6.1 Class typeStruct : public �eldListType

This class represents a structure type. The structure type is a special case of the container type. The
�elds of the structure represent the �elds in this case. As a subclass of class fieldListType, all methods
in fieldListType are applicable.

55

static typeStruct *create(string &name,

vector<pair<string, Type *>*> &flds,

Symtab *obj = NULL)

This factory method creates a new struct type. The name of the structure is speci�ed in the name
parameter. The flds vector speci�es the names and types of the �elds of the structure type. The
newly created type is added to the Symtab object obj. If obj is NULL the type is not added to any
object �le, but it will be available for further queries.

static typeStruct *create(string &name,

vector<Field *> &fields,

Symtab *obj = NULL)

This factory method creates a new struct type. The name of the structure is speci�ed in the name
parameter. The fields vector speci�es the �elds of the type. The newly created type is added
to the Symtab object obj. If obj is NULL the type is not added to any object �le, but it will be
available for further queries.

bool isCompatible(Type *type)

This method returns true if the struct type is compatible with the given type type or else returns
false.

8.6.2 Class typeUnion

This class represents a union type, a special case of the container type. The �elds of the union type represent
the �elds in this case. As a subclass of class fieldListType, all methods in fieldListType are applicable.
typeUnion inherits from the fieldListType class.

static typeUnion *create(string &name,

vector<pair<string, Type *>*> &flds,

Symtab *obj = NULL)

This factory method creates a new union type. The name of the union is speci�ed in the name

parameter. The flds vector speci�es the names and types of the �elds of the union type. The
newly created type is added to the Symtab object obj. If obj is NULL the type is not added to any
object �le, but it will be available for further queries.

static typeUnion *create(string &name,

vector<Field *> &fields,

Symtab *obj = NULL)

56

This factory method creates a new union type. The name of the structure is speci�ed in the name
parameter. The fields vector speci�es the �elds of the type. The newly created type is added
to the Symtab object obj. If obj is NULL the type is not added to any object �le, but it will be
available for further queries.

bool isCompatible(Type *type)

This method returns true if the union type is compatible with the given type type or else returns
false.

8.6.3 Class typeCommon

This class represents a common block type in fortran, a special case of the container type. The variables of
the common block represent the �elds in this case. As a subclass of class fieldListType, all methods in
fieldListType are applicable. typeCommon inherits from the Type class.

vector<CBlocks *> *getCBlocks()

This method returns the common block objects for the type. The methods of the CBlock can be
used to access information about the members of a common block. The vector returned by this
function contains one instance of CBlock for each unique de�nition of the common block.

8.6.4 Class CBlock

This class represents a common block in Fortran. Multiple functions can share a common block.

bool getComponents(vector<Field *> *vars)

This method returns the vector containing the individual variables of the common block. Returns
true if there is at least one variable, else returns false.

bool getFunctions(vector<Symbol *> *funcs)

This method returns the functions that can see this common block with the set of variables
described in getComponents method above. Returns true if there is at least one function, else
returns false.

57

8.7 Class derivedType

This class represents a derived type which is a reference to another type. It is one of the three categories
of types as described in Section 2.2. The pointer, reference and the typedef types fall under this category.
This class is derived from Type, so all the member functions of class Type are applicable.

Type *getConstituentType() const

This method returns the type of the base type to which this type refers to.

8.7.1 Class typePointer

This class represents a pointer type, a special case of the derived type. The base type in this case is the
type this particular type points to. As a subclass of class derivedType, all methods in derivedType are
also applicable.

static typePointer *create(string &name,

Type *ptr,

Symtab *obj = NULL)

static typePointer *create(string &name,

Type *ptr,

int size,

Symtab *obj = NULL)

These factory methods create a new type, named name, which points to objects of type ptr. The
�rst form creates a pointer whose size is equal to sizeof(void*) on the target platform where the
application is running. In the second form, the size of the pointer is the value passed in the size

parameter. The newly created type is added to the Symtab object obj. If obj is NULL the type is
not added to any object �le, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the Pointer type is compatible with the given type type or else returns
false.

bool setPtr(Type *ptr)

This method sets the pointer type to point to the type in ptr. Returns true if it succeeds, else
returns false.

58

8.7.2 Class typeTypedef

This class represents a typedef type, a special case of the derived type. The base type in this case is the
Type. This particular type is typedefed to. As a subclass of class derivedType, all methods in derivedType

are also applicable.

static typeTypedef *create(string &name,

Type *ptr,

Symtab *obj = NULL)

This factory method creates a new type called name and having the type ptr. The newly created
type is added to the Symtab object obj. If obj is NULL the type is not added to any object �le,
but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the typedef type is compatible with the given type type or else returns
false.

8.7.3 Class typeRef

This class represents a reference type, a special case of the derived type. The base type in this case is the
Type this particular type refers to. As a subclass of class derivedType, all methods in derivedType are
also applicable here.

static typeRef *create(string &name,

Type *ptr,

Symtab * obj = NULL)

This factory method creates a new type, named name, which is a reference to objects of type ptr.
The newly created type is added to the Symtab object obj. If obj is NULL the type is not added
to any object �le, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the ref type is compatible with the given type type or else returns
false.

59

8.8 Class rangedType

This class represents a range type with a lower and an upper bound. It is one of the three categories of
types as described in section 2.2. The sub-range and the array types fall under this category. This class is
derived from Type, so all the member functions of class Type are applicable.

unsigned long getLow() const

This method returns the lower bound of the range. This can be the lower bound of the range type
or the lowest index for an array type.

unsigned long getHigh() const

This method returns the higher bound of the range. This can be the higher bound of the range
type or the highest index for an array type.

8.8.1 Class typeSubrange

This class represents a sub-range type. As a subclass of class rangedType, all methods in rangedType

are applicable here. This type is usually used to represent a sub-range of another type. For example, a
typeSubrange can represent a sub-range of the array type or a new integer type can be declared as a sub
range of the integer using this type.

static typeSubrange *create(string &name,

int size,

int low,

int hi,

symtab *obj = NULL)

This factory method creates a new sub-range type. The name of the type is name, and the size is
size. The lower bound of the type is represented by low, and the upper bound is represented by
high. The newly created type is added to the Symtab object obj. If obj is NULL the type is not
added to any object �le, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if this sub range type is compatible with the given type type or else
returns false.

60

8.8.2 Class typeArray

This class represents an Array type. As a subclass of class rangedType, all methods in rangedType are
applicable.

static typeArray *create(string &name,

Type *type,

int low,

int hi,

Symtab *obj = NULL)

This factory method creates a new array type. The name of the type is name, and the type of
each element is type. The index of the �rst element of the array is low, and the last is high. The
newly created type is added to the Symtab object obj. If obj is NULL the type is not added to any
object �le, but it will be available for further queries.

bool isCompatible(Type *type)

This method returns true if the array type is compatible with the given type type or else returns
false.

Type *getBaseType() const

This method returns the base type of this array type.

9 API Reference - Dynamic Components

Unlike the static components discussed in Section 6, which operate on �les, SymtabAPI's dynamic compo-
nents operate on a process. The dynamic components currently consist of the Dynamic Address Translation
system, which translates between absolute addresses in a running process and static SymtabAPI objects.

9.1 Class AddressLookup

The AddressLookup class provides a mapping interface for determining the address in a process where a
SymtabAPI object is loaded. A single dynamic library may load at di�erent addresses in di�erent processes.
The `address' �elds in a dynamic library's symbol tables will contain o�sets rather than absolute addresses.
These o�sets can be added to the library's load address, which is computed at runtime, to determine the
absolute address where a symbol is loaded.

The AddressLookup class examines a process and �nds its dynamic libraries and executables and each one's
load address. This information can be used to map between SymtabAPI objects and absolute addresses.

61

Each AddressLookup instance is associated with one process. An AddressLookup object can be created to
work with the currently running process or a di�erent process on the same system.

On the Linux platform the AddressLookup class needs to read from the process' address space to determine
its shared objects and load addresses. By default, AddressLookup will attach to another process using a
debugger interface to read the necessary information, or simply use memcpy if reading from the current
process. The default behavior can be changed by implementing a new ProcessReader class and passing an
instance of it to the createAddressLookup factor constructors. The ProcessReader class is discussed in more
detail in Section 9.2.

When an AddressLookup object is created for a running process it takes a snapshot of the process' currently
loaded libraries and their load addresses. This snapshot is used to answer queries into the AddressLookup

object, and is not automatically updated when the process loads or unloads libraries. The refresh function
can be used to updated an AddressLookup object's view of its process.

static AddressLookup *createAddressLookup(ProcessReader *reader = NULL)

This factory constructor creates a new AddressLookup object associated with the process that
called this function. The returned AddressLookup object should be cleaned with the delete oper-
ator when it is no longer needed. If the reader parameter is non-NULL on Linux then the new
AddressLookup object will use reader to read from the target process. This function returns the
new AddressLookup object on success and NULL on error.

static AddressLookup *createAddressLookup(PID pid,

ProcessReader *reader = NULL)

This factory constructor creates a new AddressLookup object associated with the process referred
to by pid. The returned AddressLookup object should be cleaned with the delete operator when it
is no longer needed. If the reader parameter is non-NULL on Linux then the new AddressLookup

object will use it to read from the target process. This function returns the new AddressLookup

object on success and NULL on error.

typedef struct {

std::string name;

Address codeAddr;

Address dataAddr;

} LoadedLibrary;

static AddressLookup *createAddressLookup(const std::vector<LoadedLibrary> &ll)

This factory constructor creates a new AddressLookup associated with a previously collected list of
libraries from a process. The list of libraries can initially be collected with the getLoadAddresses
function. The list can then be used with this function to re-create the AddressLookup object, even
if the original process no longer exists. This can be useful for o�-line address lookups, where only
the load addresses are collected while the process exists and then all address translation is done
after the process has terminated. This function returns the new AddressLookup object on success
and NULL on error.

62

bool getLoadAddresses(std::vector<LoadedLibrary> &ll)

This function returns a vector of LoadedLibrary objects that can be used by the createAddressLookup(const
std::vector<LoadedLibrary> &ll) function to create a new AddressLookup object. This func-
tion is usually used as part of an o�-line address lookup mechanism. This function returns true
on success and false on error.

bool refresh()

When a AddressLookup object is initially created it takes a snapshot of the libraries currently
loaded in a process, which is then used to answer queries into this API. As the process runs
more libraries may be loaded and unloaded, and this snapshot may become out of date. An
AddressLookup's view of a process can be updated by calling this function, which causes it to
examine the process for loaded and unloaded objects and update its data structures accordingly.
This function returns true on success and false on error.

bool getAddress(Symtab *tab,

Symbol *sym,

Address &addr)

Given a Symtab object, tab, and a symbol, sym, this function returns the address, addr, where the
symbol can be found in the process associated with this AddressLookup. This function returns
true if it was able to successfully lookup the address of sym and false otherwise.

bool getAddress(Symtab *tab,

Offset off,

Address &addr)

Given a Symtab object, tab, and an o�set into that object, off, this function returns the address,
addr, of that location in the process associated with this AddressLookup. This function returns
true if it was able to successfully lookup the address of sym and false otherwise.

bool getSymbol(Address addr,

Symbol * &sym,

Symtab* &tab,

bool close = false)

Given an address, addr, this function returns the Symtab object, tab, and Symbol, sym, that reside
at that address. If the close parameter is true then getSymbol will return the nearest symbol that
comes before addr; this can be useful when looking up the function that resides at an address.
This function returns true if it was able to �nd a symbol and false otherwise.

bool getOffset(Address addr,

Symtab* &tab,

Offset &off)

63

Given an address, addr, this function returns the Symtab object, tab, and an o�set into tab, off,
that reside at that address. This function returns true on success and false otherwise.

bool getOffset(Address addr,

LoadedLibrary &lib,

Offset &off)

As above, but returns a LoadedLibrary data structure instead of a Symtab.

bool getAllSymtabs(std::vector<Symtab *> &tabs)

This function returns all Symtab objects that are contained in the process represented by this
AddressLookup object. This will include the process's executable and all shared objects loaded by
this process. This function returns true on success and false otherwise.

bool getLoadAddress(Symtab *sym,

Address &load_address)

Given a Symtab object, sym, that resides in the process associated with this AddressLookup,
this function returns sym's load address. On systems where an object can have one load ad-
dress for its code and one for its data, this function will return the code's load address. Use
getDataLoadAddress to get the data load address. This function returns true on success and
false otherwise.

bool getDataLoadAddress(Symtab *sym,

Address &load_addr)

Given a Symtab object, sym, this function returns the load address of its data section. This
function returns true on success and false otherwise.

9.2 Class ProcessReader

The implementation of the AddressLookup on Linux requires it to be able to read from the target process's
address space. By default, reading from another process on the same system this is done through the oper-
ating system debugger interface. A user can provide their own process reading mechanism by implementing
a child of the ProcessReader class and passing it to the AddressLookup constructors. The API described in
this section is an interface that a user can implement. With the exception of the ProcessReader constructor,
these functions should not be called by user code.

The ProcessReader is de�ned, but not used, on non-Linux systems.

ProcessReader()

64

This constructor for a ProcessReader should be called by any child class constructor.

virtual bool ReadMem(Address traced,

void *inSelf,

unsigned size) = 0

This function should read size bytes from the address at traced into the bu�er pointed to by
inSelf. This function must return true on success and false on error.

virtual bool GetReg(MachRegister reg,

MachRegisterVal &val) = 0

This function reads from the register speci�ed by reg and places the result in val. It must return
true on success and false on failure.

65

	Introduction
	Abstractions
	Symbol Table Interface
	Type Interface
	Line Number Interface
	Local Variable Interface
	Dynamic Address Translation

	Simple Examples
	Definitions and Basic Types
	Definitions
	Basic Types

	Namespace SymtabAPI
	API Reference - Symbol Table Interface
	Class Symtab
	File opening/parsing
	Module lookup
	Function, Variable, and Symbol lookup
	Region lookup
	Insertion and modification
	Catch and Exception block lookup
	Symtab information
	Line number information
	Type information

	Class Module
	Function, Variable, Symbol lookup
	Line number information
	Type information

	Class FunctionBase
	Class Function
	Class InlinedFunction
	Class Variable
	Class Symbol
	Symbol modification

	Class Archive
	Class Region
	REMOVED

	Relocation Information
	Class ExceptionBlock
	Class localVar
	Class VariableLocation

	API Reference - Line Number Interface
	Class LineInformation
	Class Statement
	Iterating over Line Information

	API Reference - Type Interface
	Class Type
	Class typeEnum
	Class typeFunction
	Class typeScalar
	Class Field
	Class fieldListType
	Class typeStruct : public fieldListType
	Class typeUnion
	Class typeCommon
	Class CBlock

	Class derivedType
	Class typePointer
	Class typeTypedef
	Class typeRef

	Class rangedType
	Class typeSubrange
	Class typeArray

	API Reference - Dynamic Components
	Class AddressLookup
	Class ProcessReader

